## DEPARTMENT OF MATHEMATICS: SYLLABUS



ACADEMIC YEAR 2016-2017

## B.Sc MATHEMATICS-I YEAR

| Subject | Instructional Hrs. |  | CIA | ESE | Max. <br> Marks | No. of Credits | Exam Duration (Hrs.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Theory | Practical |  |  |  |  |  |
| SEMESTER-I |  |  |  |  |  |  |  |
| Language-I | 6 | - | 25 | 75 | 100 | 3 | 3 |
| English-I | 4 | - | 25 | 75 | 100 | 3 | 3 |
| Major Paper 1 <br>  <br> Analytical Geometry of 2 Dimensions | 5 | - | 25 | 75 | 100 | 4 | 3 |
| Major Paper 2 <br> Differential Calculus | 5 | - | 25 | 75 | 100 | 4 | 3 |
| Allied I- Physics-I | 4 | 2 | 15 | 60 | 75 | 4 | 3 |
| Soft Skill-I Essentials of Language and Communication Skills | 2 | - | 40 | 60 | 100 | 3 | Viva-voce Exam |
| Non Major Elective-I | 2 | - | 40 | 60 | 100 | 2 | 2 |
| Total | 28 | 2 |  |  |  | 23 |  |
| SEMESTER-II |  |  |  |  |  |  |  |
| Language-II | 6 | - | 25 | 75 | 100 | 3 | 3 |
| English-II | 4 | - | 25 | 75 | 100 | 3 | 3 |
| Major Paper-3 Classical Algebra | 5 | - | 25 | 75 | 100 | 4 | 3 |
| Major Paper-4-Integral Calculus and Fourier series | 5 | - | 25 | 75 | 100 | 4 | 3 |
| Allied I- Physics-II | 4 |  | 15 | 60 | 75 | 4 | 3 |
| Allied Physics Practical | - | 2 | 10 | 40 | 50 | 2 | 3 |
| Soft Skill-II Essentials of Spoken and Presentation Skills | 2 | - | 40 | 60 | 100 | 3 | Viva-voce Exam |
| Non Major Elective-II | 2 | - | 40 | 60 | 100 | 2 | 2 |
| Total | 28 | 2 |  |  |  | 25 |  |
| Allied Mathematics offered to B.Sc. Statistics, BSc. Chemistry, BSc. Physics and B.Sc. Computer science in Semester I \& II | 24 Hrs. <br> 6 Hrs. (each) | - | 25 | 75 | 100 | 5 | 3 |


| Subject | Instructional Hrs. |  | CIA | ESE | Max. <br> Marks | No. of Credits | Exam Duration (Hrs.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Theory | Practical |  |  |  |  |  |
| SEMESTER-III |  |  |  |  |  |  |  |
| Language-III | 6 | - | 25 | 75 | 100 | 3 | 3 |
| English-III | 4 | - | 25 | 75 | 100 | 3 | 3 |
| Major Paper 5 <br> Differential Equations and Laplace Transforms | 5 | - | 25 | 75 | 100 | 4 | 3 |
| Major Paper 6 Three Dimensional Geometry | 5 | - | 25 | 75 | 100 | 4 | 3 |
| Allied II- Mathematical Statistics I | 4 | 2 | 15 | 60 | 75 | 4 | 3 |
| Environmental Studies | - | - | 40 | 60 | 100 | 3 | Online Exam |
| Total | 28 | 2 |  |  |  | 23 |  |
| SEMESTER-IV |  |  |  |  |  |  |  |
| Language-IV | 6 | - | 25 | 75 | 100 | 3 | 3 |
| English-IV | 6 | - | 25 | 75 | 100 | 3 | 3 |
| Major Paper-7 Vector Calculus, Fourier Transforms and Z Transforms | 5 | - | 25 | 75 | 100 | 4 | 3 |
| Major Paper 8 Statics | 5 | - | 25 | 75 | 100 | 4 | 3 |
| Allied II- Mathematical Statistics II | 4 |  | 15 | 60 | 75 | 4 | 3 |
| Allied Practical | - | 2 | 10 | 40 | 50 | 2 | 3 |
| Skill Based Elective | 2 | - | 40 | 60 | 100 | 3 | 2 |
| Total | 28 | 2 |  |  |  | 25 |  |

## III YEAR

| Subject | Instructional Hrs. |  | CIA | ESE | Max. <br> Marks | No. of Credits | Exam Duration (Hrs.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Theory | Practical |  |  |  |  |  |
| SEMESTER-V |  |  |  |  |  |  |  |
| Major Paper 9 Modern Algebra | 6 | - | 25 | 75 | 100 | 4 | 3 |
| Major Paper 10 Real Analysis | 6 | - | 25 | 75 | 100 | 4 | 3 |
| Major Paper 11 Dynamics | 6 | - | 25 | 75 | 100 | 4 | 3 |
| Major Paper 12 Graph Theory | 6 | - | 15 | 60 | 75 | 4 | 3 |
| Elective I Any one from the given list | 6 | - | 40 | 60 | 100 | 5 | 3 |
| Total | 30 | - |  |  |  | 21 |  |
| SEMESTER-VI |  |  |  |  |  |  |  |
| Major Paper-13 Linear Algebra | 6 | - | 25 | 75 | 100 | 4 | 3 |
| Major Paper 14 Complex Analysis | 6 | - | 25 | 75 | 100 | 4 | 3 |
| Major Paper 15 Programming Language C | 4 |  | 15 | 60 | 75 | 3 | 3 |
| Practicals in C | - | 2 | 10 | 40 | 50 | 1 | 3 |
| Elective II Any one from the given list | 6 | - | 25 | 75 | 100 | 5 | 3 |
| Elective III Any one from the given list | 6 |  | 25 | 75 | 100 | 5 | 3 |
| Total | 28 | 2 |  |  |  | 22 |  |



| Title of the Course/ Paper | PAPER - 2: Differential Calculus |  |  | $\begin{array}{lll}\mathbf{L} & \mathbf{T} & \mathbf{P} \\ \mathbf{3} & \mathbf{2} & \mathbf{0}\end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| Core | I Year | I Semester | Credit: 4 Sub. Code: <br> UMA/CT/1002 |  |
| Course outline | Unit-1: | Successive Differentiation -n ${ }^{\text {th }}$ derivative, standard results, Leibnitz Theorem (without proof) and its applications. <br> Chapter 3: Sections: 1.1 to 1.6, 2.1, 2.2 |  |  |
|  | Unit-2: | Jacobians, Maxima and Minima of functions of 2 variablesNecessary and Sufficient conditions (without proof), Lagrange's method of undetermined multipliers(without proof). <br> Chapter 6: Sections: 1.1,1.2 <br> Chapter 8: Sections: 4.1,5 |  |  |
|  | Unit-3: | Definition of a curvature, Cartesian formula for the radius of curvature. <br> Chapter 6: Sections: 1.1,1.2 <br> Chapter 8: Sections: 4.1, 5 |  |  |
|  | Unit-4: | Co-ordinates of the centre of curvature, Radius of curvature in polar coordinates, p-r equations, Pedal equation of a Curve. <br> Chapter 10: Sections: 2.4,2.6,2.7 |  |  |
|  | Unit-5: | Definition of Asymptotes - Asymptotes parallel to the axis, $\mathrm{F}_{\mathrm{n}}+\mathrm{P}_{\mathrm{n}-2}=0$ form, Special cases (proofs are not included) Asymptotes by inspection. <br> Chapter 11: Sections: 1,2,3,4,5,6 |  |  |
| Books for Study |  | Calculus - Volume I by S.Narayanan and T.K.Manicavachagam pillai, S.Viswanathan ( printers and publishers ) Pvt.Ltd. |  |  |
| Books for Reference | 1. | Calculus by P.R. Vittal, Margham publications |  |  |
|  | 2. | Calculus \& co-ordinate geometry of 2 Dimensions(Paper II) by A,Singaravelu, R.Ramaa, Meenakshi Agency, Chennai |  |  |



| Title of the Course/ Paper | PAPER - 4 : Integral Calculus and Fourier Series |  |  | L 3 |
| :---: | :---: | :---: | :---: | :---: |
| Core | I Year | II Semester | Cred Sub. UMA |  |
| Course outline | Unit-1: | Reduction formulae $\int x^{n} e^{a x} d x, \int x^{n} \cos a x d x, \int x^{n} \sin a x d x$, $\int \sin ^{m} x \cos ^{n} x d x$ (m,n being positive integers) $\int x^{m}(\log x)^{n}$ $\mathrm{dx}, \int \cos ^{m} x \cos n x d x \int \cos ^{m} x \sin n x d x$, Bernoulli's formula, Integrals of the form $\int e^{a x} \sin b x d x, \int e^{a x} \cos b x d x$ <br> Vol II: Chapter 13 :Sections 13.1,13.2,13.5.13.10 Chapter 14, Chapter 15 |  |  |
|  | Unit-2: | Double integrals, Change of order of integration, Triple integrals <br> Vol II: Chapter 5:Sections: 2.1,2.2, 3.1, 4 |  |  |
|  | Unit-3: | Beta, Gamma functions <br> Vol II: Chapter 7:Sections: 2.1,2.2.2.3, 3, 4, 5 |  |  |
|  | Unit-4: | Fourier series of periodic functions of period $2 \pi$, Fourier series of odd and even functions. <br> Vol III: Chapter 6: Sections: 1, 2, 3 |  |  |
|  | Unit-5: | Half range Fourier series, Change of Interval Vol III: Chapter 6: Sections: 4,5,6 |  |  |
| Books for Study |  | Calculus Volume - II \& III, by S.Narayan and T.K.Manicavachagom Pillay, S.Viswanathan Pvt.Ltd 2008. |  |  |
| Books for Reference | 1. | Calculus \& co-ordinate geometry of 2 Dimensions(Paper II) by A,Singaravelu, R.Ramaa, Meenakshi Agency,Chennai |  |  |
|  | 2. | Calculus by P.R. Vittal, Margham publications |  |  |


| Title of the Course/ Paper | PAPER-5 DIFFERENTIAL EQUATIONS \& TRANSFORMS |  |
| :---: | :---: | :---: |
| Core | II Year | III Semester Credit: 4 <br> Sub. Code: UMA/CT/3005 |
| Course outline | Unit-1 | Ordinary Differential Equations:differential equations solvable for p , solvable for x , solvable for y , Clairauts form Simple problems |
|  | Unit-2: | Second Order Equations with constant coefficients Particular integral for $e^{a x} V$, where $V$ is $x^{m}, \cos m x, \sin m x(m$ is a positive integer). Second order differential equation with variable coefficients of the form <br> $A x^{2}\left(d^{2} y / d x^{2}\right)+B x(d y / d x)+C y=Q$. Method of variation of parameters, Total differential equation of the form $\mathrm{P} d x+\mathrm{Q} d y+$ $\mathrm{R} d z=0$ - Simple problems. |
|  | Unit-3: | Partial Differential Equation:Formation of Partial Differential Equation by eliminating arbitrary constants and arbitrary functions. Complete, singular and general integral solution of standard types: $\mathrm{f}(\mathrm{p}, \mathrm{q})=0, \mathrm{f}(\mathrm{x}, \mathrm{p}, \mathrm{q})=0, \mathrm{f}(\mathrm{y}, \mathrm{p}, \mathrm{q})=0, \mathrm{f}(\mathrm{z}, \mathrm{p}$, $\mathrm{q})=0, \mathrm{f}(\mathrm{x}, \mathrm{p})=\mathrm{f}(\mathrm{y}, \mathrm{q})$; Lagrange's equation $\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$, Charpit's method - Simple problems. |
|  | Unit-4: | Laplace Transforms: Laplace and inverse Laplace transforms Simple problems. |
|  | Unit-5: | Application of Laplace Transforms Application of Laplace transform to solution of first and second order linear differential equations with constant coefficient - Simple problems. |
| Books for Study |  | ‘Calculus - Volume III' - S.Narayanan and .K.Manicavachagam pillay, S.Viswanathan (Printers and Publishers )Pvt.Ltd. |
| Books for Reference | 1. | 1.'Differential equations and Laplace Transforms ' A.Singaravelu |
|  | 2. | Differential Equations and Laplace Transforms S.Sankarappan and Dr.G.Arulmozhi Vijay Nicole Imprints Private Limited, Chennai |


| Title of the Course/ Paper | PAPER | - 6 : Three Dimensional Geometry $\quad$ L |
| :---: | :---: | :---: |
| Core | II Year | III Semester Credit: 4 <br> Sub. Code: <br> UMA/CT/3006 |
| Course outline | Unit- | Planes and Straight lines_Basic concepts and definitions of planes and straight lines - Simple problems. |
|  | Unit-2: | SpheresEquation of a sphere: Center and Radius form, Diametric form and General form. Equation of circle as a section of a sphere by a plane, Finding the centre and radius, Tangent plane, Radical plane, Coaxial system of spheres, Orthogonal systems - Simple problems. |
|  | Unit-3: | Cone Equation of cone with vertex at the origin, Equation of a quadratic cone given the vertex and the guiding curve, Condition for a general second degree equation to represent a cone - Simple problems. |
|  | Unit-4: | Right Circular Cone Equation of a right circular cone with given vertex, Axis and semi-vertical angle - Simple problems. |
|  | Unit-5: | Cylinder Equation of a cylinder: General form, Equation of a Right circular cylinder, when axis and radius are given Simple problems. |
| Books for Study |  | 'AnalyticalGeometry-3Dimension' <br> T.K.Manickavachagam Pillai T.Natarajan, S.Viswanathan (Printers \& Publshers) PVT.LTD. |
| Books for Reference | 1. | Solid Geometry’ - H.K. Dass, H.C.Saxena and M.D.Raisinghania. First Edition 1999 ,S.Chand \& Company Ltd. |
|  | 2. | Co-ordinate Geometry of three dimensions, P.R.Vittal Malini |


| Title of the Course/ Paper | PAPER -7-VECTOR CALCULUS, FOURIER TRANSFORMS AND Z TRANSFORMS |  |
| :---: | :---: | :---: |
| Core | II Year | IV Semester Credit: 4 <br> Sub. Code: <br> UMA/CT/4007 |
| Course outline | Unit-1 | Vector Differentiation: Definition, Gradient, Divergence, Curl, Directional derivative, Unit normal to surfaces, Tangent and normal planes to surfaces - Simple problems. |
|  | Unit-2: | Vector Integration: Line and Surface integrals, Green's theorem (without proof) - Simple problems. |
|  | Unit-3: | Volume integrals, Gauss theorem, Stoke's theorem (without proof) - Simple problems |
|  | Unit-4: | Fourier Transform: Infinite Fourier transform (Complex form without derivation), sine and cosine transform, Simple properties of Fourier Transforms. Convolution theorem, Parseval's Identity - Simple problems. |
|  | Unit-5: | Z-Transform:Definition of Z-transform, Z-transform of some well-known sequences, Properties of Z-transformSimple problems. |
| Books for Study |  | Vector Calculus, Fourier series and Fourier Transforms' S. Sankarappan and G.Arulmozhi, Vijay Nicole Private limited (2006) . <br> 'Engineering Mathematics III' - D.J.Prabhakaran, Asir Amirtham Enterprises, Chennai. |
| Books for Reference | 1. | 'Vector Analysis' - P.Duraipandian and Laxmi Duraipandian, Emerald Publishers. |
|  | 2. | 'Engineering Mathematics' - M.K.Venkataraman ( Volume III ), National Publishing Co. <br> 'Higher Engineering Mathematics’ - H.K.Dass, S. Chand and Co. |


| Title of the Course/ Paper | PAPER - 8:STATICS |  |  |
| :---: | :---: | :---: | :---: |
| Core | II Year | IV Semester | Credit: 4 <br> Sub. Code: UMA/CT/4008 |
| Course outline | Unit-1 | Forces:Forces, Newton's laws of motion, Resultant of two forces on a particle, Resultant of several forces acting on a particle, Resultant of three forces related to a triangle acting at a point, Resultant of several forces acting on a particle - Simple problems Chapter 2 |  |
|  | Unit-2: | Equilibrium of a particle: Laws of Friction, Equilibrium of a particle under three or more forces, Equilibrium of a particle on an inclined plane - Simple problems. Chapter 3 |  |
|  | Unit-3: | Forces on a rigid body :Moment of a force, Definition of a rigid body, Conditions following equilibrium of a rigid body (statement only), Equivalent systems of forces, Parallel forces, Point of application of resultant of many parallel forces, Varignon's theorem, Forces along the sides of a triangle Simple problems. |  |
|  | Unit-4: | Couples:Couples, Moment of a couple, Arm and Axis of a couple, Resultant of several coplanar forces, Moment of a certain couple as an area, Resultant of an couple and a force, Equilibrium of a rigid body under three coplanar forces - Simple problems.Chapter 4 (From sec 4.6 to sec) (Except 4.2.1, 4.2.3 and 4.4.3) |  |
|  | Unit-5: | Centre of mass: Centre of mass of simple uniform bodies, Triangular lamina, Rods forming a triangle, Trapezium, circular arc, Segment of a circular lamina, Elliptic quadrant, Solid and hollow hemisphere, Solid and hollow cone - Simple problems. Chapter 6 (Except 6.2.3 and 6.3) |  |
| Books for Study |  | Mechanics' - P. Duraipandian et al. - Sixth Revised Edition 2005. |  |
| Books for Reference | 1. | Statics' - K.Viswanatha naik and others, S.Chand \& Co. |  |
|  | 2. | 'Statics '- S.Narayanan and others, S.Chand \& Co. <br> ‘Statics' - A.V.Dharmapadam, ( S.Viswanathan \& Co. ) |  |


| Title of the Course/ Paper | PAPER - 9: MODERN ALGEBRA |  |
| :---: | :---: | :---: |
| Core | III Year | V Semester ${ }^{\text {V }}$ ( $\begin{aligned} & \text { Credit: 4 } \\ & \text { Sub. Code: }\end{aligned}$ |
| Course outline | Unit-1: Definition of a Group, Some examples of Groups, Some <br> Preliminary Lemmas, Subgroups, A Counting principle, <br>  <br> Normal subgroups and Quotient Groups. <br> Chapter: $\mathbf{2}$ Sections 2.1-2.6 |  |
|  | Unit-2: | Homomorphisms, Automorphisms, Cayley's theorem, Permutation Groups. <br> Chapter: 2 Sections 2.7-2.10 |
|  | Unit-3: | Definition and examples of rings, Some special classes of rings, Homomorphisms. <br> Chapter: 3 Sections 3.1-3.3 |
|  | Unit-4: | Ideals, Maximal Ideals and Quotient Rings. Chapter: 3 Sections 3.4 \& 3.5 |
|  | Unit-5: | The field of Quotients of an Integral Domain, Euclidean Rings. <br> Chapter: 3 Sections 3.6 \& 3.7 |
| Books for Study |  | 'Topics in Algebra’ I.N.Herstein, Second Edition, Wiley India Pvt. Ltd ., New Delhi. Reprint : 2014 |
| Books for Reference | 1. | 'Modern Algebra', M.L.Santiago, Tata McGraw-Hill Publishing Co,Ltd, 2009. |
|  | 2. | 'Modern Algebra', S.Arumugam, A.Thangapandi Isaac,Scitech Publications(India) Pvt.Ltd. $4^{\text {th }}$ Reprint,June 2006 |


| Title of the Course/ Paper | PAPER-10 : REAL ANALYSIS |  | $\begin{array}{lll}\mathbf{L} & \mathbf{T} & \mathbf{P} \\ \mathbf{5} & \mathbf{1} & \mathbf{0}\end{array}$ |
| :---: | :---: | :---: | :---: |
| Core | III Year V Semester |  | Credit: 4 Sub. Code: |
| Course outline | Unit-1: Equivalence, Countability, Real Numbers, Least Upper Bounds. <br>  <br>  <br> Sequences of Real Numbers: Definition of a sequence and <br> subsequence, Limit of a sequence, Convergent sequences, <br>  <br>  <br> Divergent sequences, Bounded sequences, Monotone <br>  <br> sequences. <br>  <br>  <br>  <br>  <br>  <br> Chapter :1 <br> Chapter :2 Sections $\mathbf{\text { Sections }} \mathbf{\text { 2.1-2.6 }}$ |  |  |
|  | Unit-2: Sequences of Real Numbers, Limit superior and Limit inferior, Cauchy sequences. <br> Series of Real Numbers: Convergence and divergence, Series with non-negative terms, Alternating series, Conditional convergence and absolute convergence, Tests for absolute convergence, Series whose terms form a non-increasing sequence. <br> Chapter :2 Sections 2.9 \& 2.10 <br> Chapter :3 Sections 3.1-3.4, 3.6, 3.7 |  |  |
|  | Unit-3: Limits and Metric spaces: Limit of a function on a real line, <br>  <br>  <br> Metric spaces, Limits in metric spaces. <br> Chapter: 4 Sections 4.1-4.3 <br> Uniter Corin |  |  |
|  | Unit-4:Co <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br> fu | Continuous functions on Metric spaces: Functions continuous at a point on the real line, Reformulation, Functions continuous on a metric space, Open sets, Closed sets, Discontinuous functions on $\mathrm{R}^{1}$. <br> Chapter: 5 Sections 5.1-5.6 |  |
|  | Unit-5: $\begin{array}{cl}\text { C } \\ & \text { i } \\ & \text { D } \\ & \text { F } \\ & \text { C }\end{array}$ | Calculus: Sets of measure zero, Definition of the Riemann integral, Existence of the Riemann integral (only Statement), Derivatives, Rolle's theorem, The Law of the mean, Fundamental theorems of calculus. <br> Chapter: 7 Sections 7.1-7.3, 7.5-7.8 |  |
| Books for Study |  | 'Methods of Real Analysis', Richard. R. Goldberg (Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi), 1970. |  |
| Books for Reference | 1. P | 'Real Analysis' - S. G. Venkatachalapathy, Margham Publications. |  |
|  | 2. | 'Real Analysis Volume I and II' - Dr. K. Chandrasekhara Rao, Dr. K.S. Narayanan, S.Viswanathan (Printer \&Publishers) Pvt.Ltd. |  |





| Title of the Course/ Paper | PAPER - 15 : COMPLEX ANALYSIS |  |  |
| :---: | :---: | :---: | :---: |
| Core | III Year VI Semester |  | Credit: 4 <br> Sub. Code: |
| Course outline | Unit- Regions in the complex plane, Functions of a complex variable, <br> 1: Limits, Limits involving the point at infinity, Continuity, Derivatives, <br>  Differentiation formulas, Cauchy-Riemann Equations, Sufficient <br> conditions for Differentiability, Cauchy-Riemann equations in polar <br> form, Analytic Functions and Harmonic Functions - Simple  <br> problems.  <br> Chapter : 1 Section 10 <br> Chapter :2 Sections 11,14,16,17,18,19,20,21,22,23 \& 25 |  |  |
|  | $\begin{aligned} & \text { Unit- } \\ & 2: \end{aligned}$ | Definite Integrals of Functions $\mathrm{w}(\mathrm{t})$, Contours, Contour Integrals, Examples, Upper Bounds for Moduli of Contour Integrals, CauchyGoursat theorem (only statement), Simply and Multiply Connected Domains and Cauchy Integral formula - Simple problems. <br> Chapter 4: Sections 37,38, 39,40,41,44,46,47. |  |
|  | $\begin{aligned} & \hline \text { Unit- } \\ & 3 \text { : } \end{aligned}$ | Derivatives of Analytic Functions, Liouville's theorem and the Fundamental theorem of Algebra, Taylor series, Laurent series Simple problems. <br> Chapter : 4 Sections 48 \& 49. <br> Chapter :5 Sections 53 \& 55 . |  |
|  | $\begin{aligned} & \text { Unit- } \\ & \text { 4: } \end{aligned}$ | Residues, Cauchy's Residue Theorem, Using a single Residue, The three types of isolated singular points, Residues at Poles, Examples Simple problems. <br> Chapter: 6 Sections 62,63,64,65,66,67. |  |
|  | $\begin{aligned} & \text { Unit- } \\ & 5: \end{aligned}$ | Linear Transformation, The transformation $w=\frac{1}{\mathrm{z}}$, Mappings by $\frac{1}{\mathrm{z}}$, Linear fractional transformations, An implicit form, Mappings of the upper half plane, The transformation $w=\sin z$ and Mapping by $z^{2}$ and branches of $z^{\frac{1}{2}}$,Applications of Conformal mapping -Two dimensional fluid flow. <br> Chapter : 8 Sections 83,84,85,86,87,88,89,90. <br> Chapter :10 Section 106. |  |
| Books for Study |  | 'Complex Variables and Applications' James Ward Brown, Ruel.V.ChurChill, McGraw-Hill, Inc., Seventh Edition, 2003. |  |
| Books for Reference | 1. | 'Theory and Problems of Complex Variables' Murray. R.Spiegel, Schaum outline series. |  |
|  | 2. 'Complex Analysis'- Dr.P.Duraipandian. |  |  |



| Title of the Course/ Paper | PRACTICALS IN C |  |
| :---: | :---: | :---: |
| Core | III Year | VI Semester Credit: 1 <br> Sub. Code: |
| Course outline | 1.Write a program that asks the user to enter two integers and prints all the prime numbers between them. <br> 2.Generate the series for the following functions and check the result using the corresponding built-in function: (i) $\sin x$, (ii) $\cos x$, (iii) $\mathrm{e}^{x}$. <br> 3.Perform (i) Transpose of a Matrix, (ii) Determinant of a Matrix. <br> Write a program to compute the roots of a quadratic equation $a x^{2}+b x+c=0$ <br> 4.Develop code for function Fibonacci() to find the n-the Fibonacci number for an integer $n$. Use recursion and the ternary operator. <br> 5. Write a program to compute the binomial coefficient $n C_{r}$, where n and r are positive integers using user-defined function . <br> 6.To add complex numbers using functions <br> 7.Sorting a given set of numbers in the ascending order. <br> 8. Write a function that exchanges two character strings via pointers. <br> 9.To create an unnamed structure 'student' to contain the following <br> (i) Name <br> (ii) Ten test scores <br> (iii) Final grade <br> 10. Write a program to read the name, grade and ten test scores into the structure and print them out along with the high, low and average. |  |
| Books for Study |  | 'Programming Language C with Practicals' - Ananthi Sheshasaayee and G. Sheshasaayee- Margham Publications, Chennai ,Reprint 2002. |

## Paper 13,Paper17, Paper 18

LIST OF OPEN ELECTIVES for III year
From 2014-2017 Batch Students Onwards

1. Numerical Methods
2. Formal Languages and Automata Theory
3. Operations Research
4. Discrete Mathematics
5. Fuzzy subsets and their Applications

| Title of the Course/ Paper | ELECTIVE I : NUME |  | ETHODS | $\begin{array}{lll}L & T & \mathbf{P} \\ 4 & 2 & 0\end{array}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Elective | III Year | V Semester | Credit: 5 <br> Sub. Code: UMA/CE/5001 |  |  |
| Course outline | Unit-1: Algebraic and Transcendental equations: Introduction, Errors in numerical computation, Iteration method, Bisection method, Regula-falsi method, Newton-Raphson method. Chapter :3 Sections 3.0 to 3.5 |  |  |  |  |
|  | Unit-2: Simultaneous equations: Introduction, Simultaneous equations, Back substitution, Gauss Elimination method, Gauss -Seidel iteration method. <br> Chapter :4 Sections 4.0 to 4.3, 4.8 <br> Finite Differences: Introduction, Forward, Backward and Central difference operators, Fundamental theorem for finite differences, Shift Operator, Relation between operators. Chapter :6 Sections 6.0, 6.1 (upto Theorem 6.1) \& 6.2 |  |  |  |  |
|  | Unit-3: | Interpolation : Introduction, Newton's interpolation formulae, Lagrange's interpolation formula, Divided differences, Newton's divided difference formula, inverse interpolation. Chapter :7 Sections 7.0,7.1, 7.3 to 7.6 |  |  |  |
|  | Unit-4: $\begin{array}{ll}\text { N } \\ & \text { N } \\ & \text { N } \\ & \text { T } \\ & \text { e } \\ & \end{array}$ | Numerical Differentiation : Introduction, Derivatives using Newton's Forward and Backward formulae. <br> Numerical Integration : Newton's Cotes' quadrature formula, Trapezoidal rule, Simpson's one - third rule, Simpson's three eighth rule. <br> Chapter: 8 Sections 8.0 to 8.2, 8.5 |  |  |  |
|  | Unit-5: N | Numerical solutions of Ordinary differential equations: <br> Introduction, Taylor's series method, Picard's method, Euler's method and Runge-kutta methods, Predictor Corrector method, Milne's method, Adams-Bashforth method. <br> Chapter 10: Sections 10.0 to 10.7 |  |  |  |
| Books for Study | 1. | 'Numerical Methods', S. Arumugam, A. Thangapandi Isaac, A.Somasudaram, Scitech Publications(INDIA) Pvt. LTD. 2002. |  |  |  |
| Books for Reference | ' | 'Numerical methods', First edition, P.Kandasamy, K. Thilagavathy, K.Gunavathi, Chand \& Company Ltd, New Delhi, 1997. |  |  |  |
|  | 2. ' | 'Numerical methods', V.N.Vedamurthy, N.Ch.S.N. Iyengar, Vikas Publishing House Pvt Ltd, New Delhi, 1998. |  |  |  |


| Title of the Course/ Paper |  LLECTIVE-II : FORMAL LANGUAGES AND $\mathbf{5}$ $\mathbf{T}$ $\mathbf{P}$ <br> AUTOMATA THEORY     |  |  |
| :---: | :---: | :---: | :---: |
| Core | III Year | V Semester | Credit: 5 <br> Sub. Code: UMA/CE/6002 |
| Course outline | Unit-1:Introduction, Phrase Structure Languages, Chomsky <br> hierarchy. <br> Chapter: $\mathbf{1 , 2}$ |  |  |
|  | Unit-2: | Closure properties, Context-free Language, Derivation tree, Ambiguity. <br> Chapter: 3 <br> Chapter: 4 Sections 4.1 to 4.4 |  |
|  | Unit-3: | Context-free Languages, Reduced grammar, Chomsky normal form, Greibach normal form. <br> Chapter: 1, 2. |  |
|  | Unit-4: | Finite automata: Finite state systems, Basic definitions, Non-deterministic finite automata, Finite automata with $\varepsilon$ - moves. <br> Chapter: 2 Sections 2.1 to 2.4 |  |
|  | Unit-5: | Regular expressions, Pumping lemma for regular sets <br> Chapter: 2 Sections 2.5 <br> Chapter: 3 Sections 3.1 |  |
| Books for Study |  | Units I, II, III: 'Formal Languages and Automata theory', Dr.Rani Siromoney, CLS Publishers, Chennai, Revised Edition 1984 <br> Units IV and V: 'Introduction to Automata theory', Languages and Computation' John E. Hopcroft and Jeffery D. Ullman, Narosa Publishing House. Nineteenth Reprint 2002 |  |
| Books for Reference | 1. | 'An Introduction to Formal languages and Automata', Peter Linz, Narosa Publishing House, Reprint 2011 |  |
|  | 2. | ' Introduction to Formal languages and Automatatheory and Computation', Kamala Krithivasan, R.Rama, Pearson Publication, 2009 |  |



| Title of the Course/ Paper | ELECTIVE-IV: DISCRETE MATHEMATICS |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Elective | III Year | r VI Semester | Credit: <br> Sub.Co |  |
| Course outline | Unit-1: Logic: Introduction, TF-Statements, Connectives, Atomic and Compound Statements, Well formed Statement Formulae, Truth Table of a formula, Tautology, Tautological Implications and Equivalence of formulae, Replacement process. <br> Chapter IX : Sections :1 to 9 |  |  |  |
|  | Unit-2: | Normal forms, Principal Normal forms, Theory of Inference. <br> Chapter IX : Sections: 11 to 13 |  |  |
|  | Unit-3: Open statement, Quantifiers, Valid Formulae and Equivalence, Theory of inference for Predicate Calculus Chapter IX : Sections :14 to 17 |  |  |  |
|  | Unit-4: Lattices, Some properties of Lattices, New Lattices , Modular and Distributive Lattices. <br> Chapter X : Sections: 1 to 4 |  |  |  |
|  | Unit-5: Boolean Algebras, Boolean Polynomials, Karnaugh Map and <br>  Switching Circuits <br>  Chapter X : Sections :5 to $\mathbf{8}$ |  |  |  |
| Books for Study | 1. ${ }^{\text {C }}$ | "Discrete Mathematics", M.K.Venkataraman, N. Sridharan, N. Chandrasekaran, The National Publishing Company, September 2000. |  |  |
| Books for <br> Reference | Discrete Mathematics,V.Sundaresan, K.S.Ganapathy <br> 1. Subramanian, K.Ganesan, A.R. Publications, Second Edition 1998 (Revised). |  |  |  |
|  | Discrete Mathematics,K.Chandrasekhara Rao,Norosa <br> 2. Publishing House Pvt.Ltd., 2012 |  |  |  |



| Reference | George J. Klir and Bo Yuan , Fuzzy sets and Fuzzy Logic- <br> theory and applications |
| :--- | :--- | :--- |

## ALLIED MATHEMATICS SYLLABUS

## FOR

## I B.Sc. COMPUTER SCIENCE, I B.Sc. CHEMISTRY,

## I B.Sc. STATISTICS \& II B.Sc. PHYSICS

| Title of the Course/ Paper | Paper - 1: ALLIED MATHEMATICS-I |  |  | L 3 |
| :---: | :---: | :---: | :---: | :---: |
| Allied | I Year | I Semester | Credit: 5 <br> Sub. Code: UCS/AT/1AM1 |  |
| Course outline | Unit-1: | Algebra : Summation of Binomial, Exponential and Logarithmic series(without proof) <br> Vol 1: Chapter 2: Sections: 2.1.3, 2.2.1,2.3.3 |  |  |
|  | Unit-2: | Matrices: Symmetric Unitary matrices, Eig Hamilton theorem (w computation of inver <br> Vol 1: Chapter 4: S | mmetric, O <br> Eigen vect <br> f), verifica <br> 1 to 4.1.6, | al and yleyd <br> o 4.5.3 |
|  | Unit-3: | Trigonometry :Expa $\sin \theta, \cos \theta, \tan \theta$. <br> Vol 1: Chapter 6: S | $n \theta, \cos n \theta$ 1.1 to 6.1.3. | $\overline{\theta, \cos }$ |
|  | Unit-4: | Laplace Transforms functions and propert <br> Vol 2: Chapter 7: S | transforms <br> 1.1 to 7.1.6 | dard |
|  | Unit-5: | Inverse Laplace Tra standard functions an <br> Vol 2: Chapter 7: Se | Inverse Lap es. 2.1, 7.2.3 | nsfor |
| Books for Study |  | Allied Mathematicsand Dr. S. Udayabask | \&II" by hil publishe | aipand nnai |
| Books for Reference | 1. | Allied Mathematics Imprints Private Lim | Rasheed, ai | icole |
|  | 2. | Allied Mathematics Meenakshi Agency, | ngaravelu, |  |


| Title of the Course/ Paper | Paper - 2 : ALLIED MATHEMATICS-II |  | $\begin{array}{llll} & \mathbf{L} & \mathbf{T} & \mathbf{P} \\ \text { TICS-II } & \mathbf{3} & \mathbf{3} & \mathbf{0}\end{array}$ |
| :---: | :---: | :---: | :---: |
| Allied | I Year | II Semester | Credit: 4 <br> Sub. Code: UCS/AT/2AM2 |
| Course outline | Unit-1: Solving algebraic and transcendental equation by Bisection <br> method, Iteration method, Regula-Falsi method and Newton- <br> Raphson method <br> Chapter 1: Sections: 1.1.1 to 1.4.3 |  |  |
|  | Unit-2: | Forward differences, backward differences, shift operator, relation between operators, Interpolation with equal intervals: Newton's forward and backward interpolation formulae <br> Chapter 3: Sections: 3.1 |  |
|  | Unit-3: | Interpolation with unequal intervals: Divided differences and their properties, Newton's divided difference formula, Lagrange's formula for interpolation <br> Inverse Interpolation: Lagrange's method <br> Chapter 4: Sections: 4.1 to 4.6 |  |
|  | Unit-4: | Numerical Differentiation : Numerical Differentiation upto second order solution using Newton's Forward and Backward formulae <br> Numerical Integration : Trapezoidal rule, Simpson's onethird rule, Simpson's Three - eighth rule. <br> Chapter 6: Sections: 6.1 to 6.7 |  |
|  | Unit-5: | Numerical solution of Ordinary differential equations: Taylor's series, Euler method and Runge - Kutta method of fourth order. <br> Chapter 7: Sections: 7.1 to 7.3,7.6 to 7.9,7.13,7.14 |  |
| Books for Study |  | Calculus of Finite Differences and Numerical Analysis by P.Kandasamy and K. Thilagavathy, S.Chand Publishers |  |
| Books for Reference | 1. | Numerical Analysis by B.D.Gupta, Konark Publishers Pvt Ltd. |  |
|  | 2. | 'Numerical methods', V.N.Vedamurthy, N.Ch.S.N. Iyengar, Vikas Publishing House Pvt Ltd, New Delhi, 1998. |  |


| Title of the Course/ Paper | Paper - 1 : ALLIED MATHEMATICS-I |  |  | $\begin{array}{ll}\text { L } & \text { T } \\ \mathbf{3} & \mathbf{3}\end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| Allied | I Year | I Semester | Credit: 5 Sub. Code: | /AT/1A |
| Course outline | Unit-1: | Algebra : Summation of Binomial, Exponential and Logarithmic series(without proof) <br> Chapter 2: Sections: 2.1.3, 2.2.1, 2.3.3 |  |  |
|  | Unit-2: | Differential Calculus: $\mathrm{n}^{\text {th }}$ derivative, Leibnitz's formula for the $\mathrm{n}^{\text {th }}$ derivative of a product(without proof) <br> Chapter 1: Sections: 1.1.1 \& 1.1.2 |  |  |
|  | Unit-3: | Differential Calculus: Jacobians, Maxima and Minima of function of two variables <br> Chapter 1: Sections: $\mathbf{1 . 2}$ \& 1.3.1 |  |  |
|  | Unit-4: | Trigonometry : Expansions $\sin n \theta, \cos n \theta, \sin ^{n} \theta, \cos ^{n} \theta$, $\sin \theta, \cos \theta, \tan \theta$. <br> Chapter 6: Sections: 6.1.1-6.1.3. |  |  |
|  | Unit-5: | Integral Calculus: Reduction formula : $\int \operatorname{Sin}^{n} x d x, \int \operatorname{Cos}^{n} x d x$ $\int \operatorname{Sin}^{m} x \operatorname{Cos}^{n} x d x, \int x^{n} e^{a x} d x, \int x^{n} \cos a x d x, \int x^{n} \sin a x d x$, $\int x^{m}(\log x)^{n} d x, \int_{0}^{\frac{\pi}{2}} \cos ^{m} x \cos n x d x \int_{0}^{\frac{\pi}{2}} \cos ^{m} x \sin n x d x$ <br> Chapter 2: Sections: 2.9 (Related to only above formulae) |  |  |
| Books for Study |  | Allied Mathematics-Volumes I\&II by P. Duraipandian and Dr. S. Udayabaskaran, Muhil publishers,Chennai . |  |  |
| Books for Reference | 1. | " Allied Mathematics" by A.Abdul Rasheed, Vijay Nicole Imprints Private Limited, Chennai |  |  |
|  | 2. | " Allied Mathematics" by Dr.A.Singaravelu, Meenakshi Agency, Chennai |  |  |





| Title of the Course/ Paper | Paper 1: NON-MAJOR ELECTIVE |  |  | L |
| :---: | :---: | :---: | :---: | :---: |
| Elective | Offered to other departments |  | Credit: 2 <br> Sub. Code: UMA/NE/1CE1 |  |
| Course outline | Unit-I: | Problems on numbers, simplification, Average. |  |  |
|  | Unit-II: | Problems on ages, Surds and Indices, Percentage. |  |  |
|  | Unit-III | Simple interest, Inser | missing |  |
| Books for Study | Quantitative Aptitude by R.S.Agarwal., S.Chand and Co. Ltd. |  |  |  |
| Book for Reference | 'A Modern approach to verbal and non-verbal reasoning' R.S.Agarwal., S.Chand Publishers |  |  |  |


| Title of the Course/ Paper | Paper 2 : NON-MAJOR ELECTIVE |  |  | $\begin{array}{ll}\text { L } & \mathbf{T} \\ \mathbf{2} & \mathbf{0}\end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| Elective | Offered to other departments |  | Credit: 2 <br> Sub. Code: UMA/NE/2CE2 |  |
| Course outline | Unit-I:H.C.F. and L.C.M., Decimal fractions, Square roots and  <br>  cubic roots. | H.C.F. and L.C.M., Decimal fractions, Square roots and cubic roots. |  |  |
|  | Unit-II: | Problems on Profit and Loss, Ratio and Proportion. |  |  |
|  | Unit-III | Time and work, Time and distance, Speed. |  |  |
| Books for Study | Quantitative Aptitude by R.S.Agarwal., S.Chand and Co. Ltd. |  |  |  |
| Books for Reference | 'A Modern approach to verbal and non-verbal reasoning' R.S.Agarwal., S.Chand Publishers |  |  |  |

## QUESTION PAPER PATTERN

## DISTRIBUTION OF INTERNAL MARKS(25)

| CAT-I | 05 Marks |
| :--- | :--- |
| CAT - II | 05 Marks |
| 3 Hour Examination (Model) | 05 Marks |
| Objective type questions | 05 Marks |
| Seminar | 05 Marks |
| Total | $\mathbf{2 5}$ Marks |

## DISTRIBUTION OF EXTERNAL MARKS (75)

| Section A | Answer any 10 out of 12 questions. <br> (Each question carries 2 marks) |
| :--- | :--- |
| Section B | Answer any 5 out of 7 questions. <br> (Each question carries 5 marks) |
| Section C | Answer any 3 out of 5 questions. <br> (Each question carries 10 marks) |
| Total | $\mathbf{7 5}$ Marks |

