COURSES OF STUDY AND SCHEME OF EXAMINATION

ACADEMIC YEAR 2014-2015 ONWARDS

SERIAL	NAME OF THE	INTERNAL	EXTERNAL	MAX	CREDIT
NUMBER	PAPER			MARKS	
1	CORE I—MPPH1	25	75	100	6
	RESEARCH				
	METHODLOGY				
2	CORE I—MPPH2	25	75	100	6
	ADVANCED TOPICS				
	IN PHYSICS				
3	ELECTIVE (any one)	25	75	100	6
	X-RAY				
	CRYSTALLOGRAPHY-				
	MPPHE1				
	CRYSTAL GROWTH-				
	MPPHE2				
4	DISSERTATION-	50	150	200	18
	MPPHPR				
TOTAL				500	36

CORE PAPER –I

RESEARCH METHODOLOGY - Credit-6

I: PRINCIPLES OF SCIENTIFIC RESEARCH

- 1. Nature of research History of research- research and philosophy-the mental approachthe planning of research-the organization of research-experimentation-accuracy and economy of effort-social implications of research-relevance of research in modern society.
- 2. Use of library- use of abstracts-preparation of bibliography-methods of editingpresentation of manuscripts-thesis writing- discussion of results.

References for I :

1. 'Research Methodology', Rajammal P.Devadas & K.Kulandaivel, 1979.

- 2. 'Research Methodology', C.R. Kothari New Delhi, Wiley Eastern Ltd, 1985.
- 3. 'Research Methodology', N.Gurumani, MJP Publishers First Edition.

II: NUMERICAL METHODS

- 1. Solution of differential equations –Euler's method-Runge-Kutta method
- 2. Matrix algebra and simultaneous equations-elementary operations of matrices-gauss-Jordon elimination method-matrix inversion-Eigen values and Eigen vectors of real Symmetric matrix.
- 3. Differentiation and integration –Legendre polynomials-Gaussian quadrature-Interpolation-Lagrange interpolation.

References for II:

- 1. 'Computer applications of Numerical Methods ',S.S.Kuo,Addison-Wesley,Massachusettes,1972.
- 2. 'Computer oriented Numerical Methods ',V.Rajaraman,(2nd Edn.),PHI, New Delhi.
- 3. 'Numerical Recipes in Fortran ', Press et al .,(2nd Edn.), Cambridge University Press ,1992.
- 4. 'Numerical Methods ', E.Balagurusamy, TMH, 1999.

III: STATISTICAL METHODS

- 1. Least curve fitting-normal equations for curve fitting-orthogonal polynomials-Chebyshev polynomials.
- 2. Errors- Mean-standard deviation-moments-variance-skewness-distribution modelspropagation of errors.

References for III :

- 1. 'Statistics ', M.P.Spiegel,Schaum's Outline series, (Asian Student Edn.),McGraw Hill,Singapore,1981.
- 2. 'Computer oriented Numerical methods ',V.Rajaraman,(2nd Edn.),PHI, New Delhi,1980.
- 3. 'Advanced Practical Physics ', M.Nelkon & J.M.Ogborn,(4th Edn.),ELBS,London,1977.

IV: COMPUTER PROGRAMMING

1.Introduction to computers-digital and analog types-binary arithmetic-inter- conversion between binary,decimal,octal and hexadecimal systems-binary coded decimal-8421 code-gray code-excess 3 code and inter- conversion.

2. FORTRAN-writing programs-data types-constants, variables and data structures-basic statements- input, output statements-sub-programs-additional features-applications.

3. BASIC-Introduction to structured programming-Basic statements-login, logout –error diagnostics- debugging-branching-library functions-vector matrix operations-applications.

Reference for IV:

- 1. 'Digital Computer Fundamentals', T.C.Bartee, (5th Edn.Asian Student's Edn.), McGraw-Hill, Singapore, 1982.
- 2. 'Digital Logic and Computer Design ',M.M.Mano,Prentice-Hall India ,New Delhi, 1979
- 3. 'Programming in Basic ', E. Balagurusamy, TMH, New Delhi, 1989
- 4. 'Basic Programming Self-Taught ', S.C.Hirsch, PHI, New Delhi, 1983.
- 5. 'Programming in Fortran 77', V.Rajaraman, TMH, New Delhi, 1981.
- 6. 'Programming with Fortran ', S.Lipschutz, Schaum's Outline Series 'McGraw-Hill, Singapore, 1988.

CORE PAPER II

Advanced Topic in physics – Credit - 6

I: QUANTUM MECHANICS

1.Vector space concepts-quantum states-dynamical variable as abstract vectors and operatorsrepresentations-transformation-diagonalisation and simultaneous diagonalisability-time evolution- Schrödinger, Heisenberg and interaction pictures-symmetries and conservation laws.

2. Relativistic wave equations-Klein-Gordon equation-plane wave solutions-Dirac equationplane wave solutions-negative energy states-spin and magnetic moment of electron-particleantiparticle formalism-elementary particles.

3. Angular momentum-quantum mechanical definitions-commutation rules-Eigen value spectrum-matrix representation-addition of two angular momenta-C-G coefficients-application to physical problems.

References for I:

- 1. 'A Text Book of Quantum Mechanics' .P.M.Mathews & K.Venkatesan, TMH, New Delhi, 1976.
- 2. 'Introduction to Quantum Theory'. D.Park, McGraw-Hill, Singapore, 1992.
- 3. 'Quantum Mechanics', E.Merzbacher, John Wiley & Sons, Singapore, 1970.

II: GROUP THEORY

1. Definition of groups, subgroups and classes-symmetry elements and symmetry operationrepresentation of symmetry operations by matrices-matrix representation of groupreducible and irreducible representation-character table-analysis of reducible representations-normal modes of various symmetry types.

References for II:

- 1. 'Elements of group Theory for Physicists', A.W.Joshi, (3rd Edn.), Wiley Eastern ltd., Chennai, 1982.
- 2. 'Chemical Applications of Group Theory', F.A.Cotton, (2nd Edn.), Wiley Eastern ltd., Chennai, 1971.
- 3. 'Group Theory and its Applications to Physical Problems', N.Hamermesh, Addison-Wesley, Massachusetts, 1964.

III: CHEMICAL PHYSICS

Molecular structure: Born –Oppenheimer approximation-hydrogen molecule ionhydrogen molecule-valence bond method –molecular orbital method-structure of diatomic molecule-shape of polyatomic molecules.

- 1. Determination of molecular structure: X-ray diffraction-determination of molecular symmetry and molecular parameters-electron diffraction.
- 2. Molecular spectra: Types of transitions-rotation of diatomic molecules and polyatomic molecules-IR rotation-vibration spectra of gaseous diatomic and simple polyatomic molecules-theory of Raman intensities-bond polarisability derivatives-bond types from Raman intensities-bond orders.

References for III:

- 1. 'Molecular Quantum Mechanics', P.W.Atikins, (2nd Edn.), Oxford Univ.Press, London, 1982.
- 'Fundamentals of Molecular Spectroscopy', C.N.Banwell & E.M.McCash, (4th Edn.), TMH, New Delhi, 1994.
- 3. 'Determination Molecular Structure', P.J.Wheatly.
- 4. 'Spectroscopy', B.P.S.traughan & S.Walker, Vols. 1&2, Chapman & hall, London, 1976.
- 5. 'Introduction to Molecular Spectroscopy', G.M.Barrow, McGraw-Hill, Tokyo, 1962.

ELECTIVE

X-ray Crystallography –Credit- 6

I: Crystal structure:

Crystal lattice- crystallographic axes-simple lattice (sc)- Body cubic (bcc)-face centered cubic (fcc)- Miller indices –crystal structure of sodium chloride-Hexagonal close packing –cubic close packing-coordination number –crystal packing factor –symmetry operation / elements ,Rotation-Transition –inversion symmetry-space groups-equivalent position in a unit cell- point groups – space groups.

II: Bonding in solids:

Covalent bond -ionic bonding- similarities and differences between ionic and covalent-Transition between covalent &ionic bonding –Metallic bond –bond order- bond length-bond energy-difference between polar bonds molecule-intermolecular attraction-vanderwals forcesorigin of vanderwals dispersion forces –temporary fluctuating dipoles –strength of dispersion forces-how molecular shape affects the strength of dispersion forces – dipole- dipole interaction in vanderwals forces- hydrogen bond- symmetric hydrogen bond- dihydrogenate bond- advanced theory of hydrogen bond –interaction to hydrogen bonding in water –hydrogen bonding in biomolecules.

III: Experimental Methods of X-ray Diffraction:

Reciprocal Lattice-Reciprocal lattice of various crystal systems-The Ewald Sphere-Electron in a Periodic Potential-Diffraction of X-rays by Crystal lattice-Laue's Formulation of X-ray Diffraction-X-ray Diffraction and Bragg's law-X-ray Diffraction methods-Laue Diffraction-Rotating crystal method-X-ray Powder Diffraction.

IV: Crystal Structure Determination:

Scattering factor –Structure factor-centro- symmetric crystal and the phase problem-need for phase-oscillation method of X-ray Diffraction-The Precession Method-X-ray Diffractometer-X-ray Source-Goniometer-Video camera (or) Microscope-X-ray Detector system-Host computer-Data collection-Determination of Structure factor-Steps in crystal structure determination-Electron Diffraction-Neutron Diffraction.

V: Crystal Structure Analysis:

Softwares for Crystallography-Structural analysis-Stereo Chemistry-Molecular structure and Chemical Bonding-Hybridization-Dihedral Angle-Chirality - Conformation of Acyclic and Cyclic systems.

References:

- 1. Elementary Crystallography D. Velmurugan, MJP Publishers, 2008.
- 2. Elements of X-Ray Crystallography Leonid. V. Azaroff, New York, McGraw Hill, 1968.
- 3. Stereochemistry of Organic Compounds D. Nasipuri, John Wiley & sons, Chichester, 1991.
- 4. Stereochemistry P.S. Kalsi, New age international, (6th Edn) 2005.
- 5. Crystallography and its Application Dent Glasser.L.S , Van Nostrand Reinhold ,1977.
- 6. Crystallography for Solid State Physics Verma Ajit Ram & Srivastava, Wiley Eastern, 1982.

- 7. Essentials of Crystallography M.A.Wahab. Narosa Book Distributors Private Limited, 2009.
- 8.Fundamentals of Crystallography C. Giacovazzo, H.L. Monaco, G. Artioli, D. Viterbo, G. Ferraris, G. Gilli, G. Zanotti, M. Catti, Oxford University Press, USA, 2002.

ELECTIVE

CRYSTAL GROWTH- Credit-6

I: NUCLEATION

Nucleation concept – Kinds of nucleation – Classical theory of nucleation - Spherical nucleus – Induction period – Measurement - Heterogeneous nucleation – Equilibrium concentration of embryos – Energy of formation of a critical nucleus - Free energy of formation of a critical heterogeneous cap shaped and disc shaped nuclei –Nucleation rate - Secondary nucleation.

II: CRYSTAL GROWTH THEORIES

Surface energy theory – Diffusion theory – Adsorption layer theory – Volmer theory – Bravais theory – Kossel theory – Two dimensional nucleation theory – Free energy of formation of a two dimensional nucleus – Possible shapes – Rate of nucleation – Mononuclear model – Polynuclear model – Birth and spread model – Modified Birth and spread model.

III: CRYSTAL GROWTH FROM SOLUTION

Low temperature solution growth – Solution and Solubility – Preparation of solution – Principle of low temperature solution growth - Mier's solubility diagram – Measurement of solubity – Measurement of Ostwald-Mier's metastable zone width – Achievement of supersaturation.

Crystal Growth methods – Slow cooling method – Holden's rotary crystallizer - Mason Jar method – Mastner and Janta method - Slow evaporation method – Johnson's rotating crystal method - Temperature gradient method – Kruger and Fink U tube method.

IV: MELT GROWTH AND VAPOUR GROWTH

Growth of crystal from melt – Bridgman method – Kyropolous method – Czochralski method – Verneuil method – Phase diagram principle of zone refining - Zone melting method – LEC growth of III – V materials.

Physical vapour deposition – Chemical vapour deposition – Open and closed systems – Physical and thermo-chemical factors affecting growth process.

V: GEL GROWTH, HYDROTHERMAL GROWTH AND FLUX GROWTH

Gel growth – Different gel medium – Specific gravity – Silica gel – Agar gel – Basic growth procedure – Single diffusion technique – Double diffusion technique – Reaction method – Chemical reduction method.

Crystal growth by hydrothermal method.

High temperature solution growth (Flux growth) – Principle of flux growth – Slow cooling method – Slow evaporation method – Top seeded solution growth.

BOOKS FOR STUDY

1. J. W. Mullin, "Crystallization

- 2. M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution"
- J. C. Brice, "Crystal Growth Processes"
 J. C. Brice, "The Growth of Crystals from Melt"
- 5. D. Elwell and H. J. Scheel, "Crystal Growth from High Temperature Solution"
- 6. Heinz K. Henish, "Crystal Growth in Gels", Cambridge University Press, 1973.
- 7. Crystal Growth techniques: P. Ramasamy & Santhana Raghavan

BOOK FOR REFERENCE

1. P. Ramasamy and F. D. Gnanam, "UGC Summer School Notes". 1983.